
Three paths to delivering

a successful EDA

Three paths to delivering a successful EDA 2 Copyright (©) 2021 RTInsights

We are living in a cloud-native world. For many organizations, scale-out, distributed, microservices-based

environments – which can deliver greater scalability, reliability, and efficiency – have become the default

approach to software design and deployment.

Yet simply migrating to cloud-native architectures doesn’t guarantee the full benefits that this strategy

stands to offer. Ensuring that your cloud-native environment is as agile, flexible, and engaging as possible

requires the ability to build highly responsive applications that can make decisions in real time – no matter

which type of environment they are hosted in, which languages they are written in or which services

connect them together.

This is why event-driven architectures, or EDA, have become a foundational part of modern, cloud-native

environments. By enabling real-time decisions based on event streaming, easily deployable EDA platforms

provide businesses with a means of taking application performance and responsiveness to the next level.

They also make it easy to expand analytics functionality over time as use cases grow more complex.

In order to help decision-makers understand the importance of EDA within modern IT strategies, this

eBook describes how EDA works, why it’s an essential ingredient in the typical environment today, and

how to enable EDA using open source technologies such as Apache Kafka (an event streaming platform)

and Kubernetes (an orchestrator for application microservices).

As the following pages explain, no matter how your organization’s environment is designed or which types

of applications you deploy, open-source EDA solutions help bring flexibility and efficiency to development

and IT teams while also creating more responsive environments that optimize the end-user experience. In

so doing, they smooth the path to modernization.

Three paths to delivering a successful EDA 3 Copyright (©) 2021 RTInsights

Chapter 1: The What and Why of EDA

Event-driven architecture, or EDA, is a way of designing applications and

services to respond to real-time information based on the sending and

receiving of information about individual changes to the state of a business

application. Instead of processing data in batches and only then modifying

configurations, EDA allows applications to react continuously to events

within the environment that hosts them.

Benefits of EDA

EDA offers application design and deployment that benefit a range of stakeholders:

 Architects: EDA makes it easier to design applications as a set of loosely-coupled services that use

events to determine when and how to communicate with each other.

 Developers: Developers can leverage EDA to build highly dynamic applications that respond to changing

conditions, including those that developers may not anticipate when writing code. What’s more,

because EDA can work with applications written in any language or framework, it provides a flexible

way for developers to integrate applications within polyglot environments.

 Customers: For end-users, EDA means an experience that is more immediate and responsive than

conventional applications allow. With EDA, applications can deliver personalized content to each

individual end-user based on the events that occur within the user session, leading to more engaging

experiences that reflect real-time user input.

For a longer discussion of the advantages of EDA, read on to chapter 2, which dives deep into EDA use cases.

EDA and cloud computing

The origins of EDA stretch back to before the cloud age. However, the migration of the majority of

enterprise workloads to the cloud has created a new imperative for integrating EDA into application

deployment patterns and management strategies.

EDA is a natural fit for the cloud for several reasons. One is that applications in the cloud are often

deployed as loosely-coupled microservices rather than as the monolithic applications that predominated in

the era of on-premises computing. When applications are broken into microservices, each service operates

autonomously, which translates to greater agility and resiliency. However, each service must also interact

constantly with other microservices. Attempting to manage microservices interactions using tightly coupled

communications (meaning those based on periodic batch processing) would not only be inefficient but

would make it difficult to build microservices applications that can respond quickly to changes in user

behavior or expectations.

With EDA, it becomes easy to let events control how microservices behave and interact. For example, a

Customer Relations Management (CRM) application could publish changes to customer data to a stream,

allowing other applications – such as a call center database, which needs accurate and up-to-date customer

data whenever a customer calls – to collect and process data from that stream in real time.

Three paths to delivering a successful EDA 4 Copyright (©) 2021 RTInsights

The shift to the cloud has also increased user expectations in ways that make EDA a valuable architectural

solution. Users expect a high degree of immediacy and personalization, and developers need to leverage

vast volumes of data to deliver it. By using streaming event data to shape application behavior in real time,

developers can build applications that efficiently leverage data to deliver personalized user experiences

that are updated in real time.

A third advantage of EDA is that it works with virtually any type of IT environment and application. You

don’t need to write your application in a specific language to take advantage of EDA; you just need to

deploy an EDA framework that allows applications to detect and respond to events. Likewise, EDA can

be applied equally well to a single-cloud, multi-cloud, hybrid cloud, or even conventional, on-premises

environment.

The role of Kafka

Apache Kafka has emerged as a leading solution for streaming the events data that provides the foundation

for an EDA approach to application deployment and management. It enjoys the highest market share among

even streaming platforms, and is used by tens of thousands of companies, according to research by Enlyft.

Although Kafka is only one of several open source streaming message brokers available today (other

popular options include Apache Pulsar and Apache ActiveMQ), Kafka has gained massive adoption thanks

to the following factors:

Scalability: Kafka uses a distributed architecture that allows Kafka servers to be added or

removed quickly, making it possible to scale the system up as necessary to handle very large

volumes of streaming data.

Fault tolerance: The distributed, redundant nature of Kafka also makes the system highly

tolerant. Event streaming is not disrupted by the failure of some Kafka servers.

Low latency: Kafka offers latency rates as low as ten milliseconds, enabling processing in

virtually true real time.

To implement EDA with the help of Kafka, businesses also need a means of deploying and orchestrating

their application microservices via a platform – such as OpenShift – that automatically manages container-

based microservices applications. But as a high-performing and reliable message broker, Kafka provides the

foundation for an EDA solution stack.

https://enlyft.com/tech/products/apache-kafka

Three paths to delivering a successful EDA 5 Copyright (©) 2021 RTInsights

Challenges in EDA

While EDA offers a range of benefits, it also presents several challenges that organizations must plan for in

order to integrate EDA effectively into their IT strategy:

 Starting the migration: One is choosing where to start. In most cases, implementing a full-scale EDA

across the entire application environment is not practical. Instead, teams must start small – by choosing

a single application or use case, for instance – and work up from there to move more of their applications

and services to an event-driven approach.

 Ensuring flexibility: Devising a flexible EDA strategy is also a challenge. The EDA tools that organizations

choose should not lock them into a particular ecosystem or type of architecture. It’s critical to plan an

EDA solution that can evolve along with your business’ overall IT strategy and that gives you the level of

control you need over how EDA tools are deployed and managed.

 Acquiring expertise: Organizations must ensure that they have access to the expertise they need to roll

out and manage EDA tools effectively. EDA is a complicated landscape, with many tools and implementa-

tion strategies available. Finding the best approach for your business requires technical skills that not all

organizations possess in-house.

These challenges can all be overcome, as the following chapters explain. But it’s essential to account for

them as you plan and implement an EDA strategy for your business.

Three paths to delivering a successful EDA 6 Copyright (©) 2021 RTInsights

Chapter 2: Three top EDA user patterns
The preceding chapter touched briefly on the benefits of EDA. But because

EDA can be applied to solve so many different types of problems in modern

application environments, it’s worth diving deeper into the specific use cases

for EDA.

In general, EDA use cases in modern, cloud-native environments can be

broken down into three main categories: achieving real-time event streaming,

integrating loosely-coupled microservices, and enabling efficient communications within complex cloud

architectures.

Move from batch data to real-time streaming

Traditionally, the default approach to data processing within applications was to manage data in batches,

or by using a shared data access tier or nonstandard APIs. The first approach meant that applications

would wait until they had collected a certain amount of data before processing it, rather than processing

each unit of data in real time as it was generated. The second and third approaches required complex

tooling and architectures, making management a challenge.

Batch processing is easier to implement, but it hampers the customer experience. When applications

have to wait to process data in batches, customers have to wait on results – which is a problem in a world

where the typical customer won’t wait even two seconds for a website to load. A product inventory in an

online store may be updated only every ten minutes, for example, leading to situations where customers

are allowed to add an item to their cart even if the item has already sold out due to delays in reconciling

the product listings with actual inventory availability.

With streaming data, these frustrations disappear. An eCommerce app that takes advantage of streaming

event data can update its inventory in real time as each transaction occurs. As another example, real-time

streaming also makes it practical to deliver instant product recommendations tailored to each customer,

which would be hard to do when working with batch data.

In short, EDA makes it possible for applications to become as responsive as possible and react to events

immediately, as opposed to the periodic updates that batch processing enables.

Interoperate across hybrid cloud

As businesses shift to hybrid cloud architectures that combine on-premises resources with those hosted

on one or more public clouds, they need a way to manage those resources centrally.

APIs that are based on open standards are part of the solution to this challenge because open APIs allow

resources on disparate platforms to communicate with each other.

But a key limitation of APIs is that they operate on a request-response model. If the state of a resource

changes, other resources won’t know of the change until they check the API again. For this reason, APIs

within hybrid environments work best only for managing synchronous operations.

In contrast, event streams enable asynchronous interoperability without requiring constant check-ins to keep

resources informed of changes. Instead, the various resources running in a hybrid environment can publish

state changes to an event stream, and other resources can monitor them continuously from that location.

In this respect, EDA brings flexibility to hybrid cloud environments that APIs alone cannot provide.

https://www.hobo-web.co.uk/your-website-design-should-load-in-4-seconds/

Three paths to delivering a successful EDA 7 Copyright (©) 2021 RTInsights

Connect loosely-coupled microservices

As noted above, modern applications are often deployed as a set of microservices. Each microservice

operates independently yet depends centrally on other microservices to do its job. One microservice

might handle user logins, for example, while a second, front-end microservice generates content to display

to the user upon login, and a third tracks user activity in order to help build an individualized profile of

user preferences and behavior.

Microservices offer a variety of benefits to developers, including the ability to keep different areas of

application functionality discrete and independent. However, they also present a major challenge in that

it can be difficult to implement an efficient means of coordinating microservices activity while still ensuring

that each microservice remains independent and loosely coupled from others. If you make the behavior

of one microservice contingent upon another microservice, you end up with microservices that are tightly

coupled and that lack scalability and resilience.

For instance, imagine a scenario where a microservice that handles user logins can’t process a transaction

until it receives data from the front-end microservice that is responsible for generating the content that

the user will see upon login. In this case, not only will it take longer to log the user in (because the login

transaction can’t complete until the front-end content is generated), but there is also a risk that the login

may fail entirely if the front-end service times out or is unresponsive.

Problems like this can be avoided with an EDA approach in which microservices operate in parallel rather

than depending on each other. In an event-driven environment, a login microservice and a front-end

microservice could react independently to the event of a user login request. Each microservice would do

its work independently and in parallel, leading both to a faster transaction and to a lower risk of failure in

the event that one microservice is slow to respond.

These examples highlight the benefits that EDA offers as a way to achieve the full potential of loosely

coupled microservices architectures. Without EDA, a microservices application is at risk of behaving more

like a monolith – unable to scale and ridden with single points of failure.

Three paths to delivering a successful EDA 8 Copyright (©) 2021 RTInsights

Chapter 3: Optimizing EDA for Architects and Developers
EDA enables a more positive user experience and allows architects and developers

to take full advantage of cloud-native application architectures. However, imple-

menting EDA can also pose challenges from a technical perspective.

As chapter 1 noted, there are a number of EDA solutions available and multiple

approaches to implementing EDA. A key task for architects and developers, then,

is to identify an EDA solution that delivers a powerful and flexible experience

from a technical perspective while also enabling all of the customer-centric

benefits that EDA unlocks.

There are several factors to consider in this regard.

Uniting the entire IT organization

To deliver their full potential, EDA tools should not be limited to use by certain teams. Instead, they should

enable all teams to communicate and integrate their IT assets via events – regardless of which types of

assets the teams develop or which tools they use to create them.

In this way, EDA ensures that teams retain the independence they need to operate with agility while still

providing a consistent framework for unifying communications across all corners of the IT estate.

Polyglot application support

As noted above, EDA tools should allow any application to record, detect and respond to events, no matter

how the application is designed or which language it is written in. Solutions that work with only certain

types of applications prevent organization-wide adoption of EDA as a means of unifying disparate clouds

and application environments.

Diverse architecture support

Along similar lines, EDA tools that only work with certain architectures – such as only within a certain

public cloud or only on-prem – limit teams’ ability to leverage EDA in a way that covers their entire IT

estate while also maximizing flexibility. Instead, teams need EDA solutions that work with any and all

types of IT environments – on-prem, single cloud, multi-cloud, and hybrid cloud.

Self-managed vs. fully-managed deployment options

Different teams have different levels of expertise when it comes to working with EDA. They also have

varying priorities with regard to the amount of control they need over their EDA framework.

For that reason, developers and architects can derive the greatest benefit from EDA solutions that give

them the option of deploying and managing EDA tools themselves or using a fully managed approach. The

former strategy delivers more control but also requires more effort and expertise. The latter provides the

most seamless EDA experience but comes with some restrictions regarding how tools can be configured

and used.

Choice rules

All of the above can be summed up by saying that, when it comes to optimizing EDA from the perspective

of developers and architects, having a maximum choice is a key priority. The more choices teams have in

how they use EDA tools, which applications and architectures the tools support, and how the tools are

configured and deployed, the better-positioned teams are to implement EDA in a way that supports rather

than hinders their overall IT strategy.

Three paths to delivering a successful EDA 9 Copyright (©) 2021 RTInsights

Chapter 4: Integrating EDA into the

Cloud-Native Ecosystem

So far, we’ve discussed what EDA means, why it’s important to both

end-users and technical teams, and which main factors to consider

when selecting an EDA solution.

There remains one important consideration to address: how to fit EDA into

the broader ecosystem of cloud-native tools and processes that power your

business. What we mean here is not tool integration in a technical sense but

rather implementing EDA in such a way that it aligns with and enhances

other technological priorities.

This is important because, once again, there are a variety of possible approaches to EDA, but they don’t all

jibe with existing IT assets in equally effective ways.

Embrace the ecosystem

That’s why it’s critical to devise an EDA strategy that ties EDA into the broader technological

ecosystem that powers your business. The best EDA solutions are those that fit naturally into

larger platforms and that are integrated by default with the other tools and technologies your

organization already uses.

Without taking care to fit your EDA solution neatly within your broader technology ecosystem,

it becomes much harder to implement an efficient and flexible EDA strategy.

Open source

Choosing an open source approach to EDA is one way to ensure that EDA integrates smoothly

into your broader ecosystem. Open source EDA solutions, like Kafka deployed on top of Open-

Shift, provide maximum flexibility for businesses to integrate EDA with all of their applications

and environments.

An open source approach also means teams receive rapid updates as open source tools evolve,

while avoiding the risk of being locked into a proprietary vendor platform.

Vendor experience and expertise

The most effective EDA solutions come from vendors who have deep experience not just

with EDA but with the broader set of cloud-native technologies, of which EDA is but one part.

Less experienced vendors who specialize in EDA alone are less likely to deliver tools that are

compatible with the full suite of cloud-native services and architectures available today.

Support

Obtaining reliable, continuous support for EDA solutions is also important for ensuring that

they can align with and grow alongside your other cloud-native investments. Without proper

support, it is much more challenging not only to troubleshoot issues that arise within streaming

data architectures but also to identify the best ways to evolve your EDA strategy over time.

Three paths to delivering a successful EDA 10 Copyright (©) 2021 RTInsights

RTInsights is an independent, expert-driven web resource for senior business and IT enterprise professionals in

vertical industries. We help our readers understand how they can transform their businesses to higher-value

outcomes and new business models with AI, real-time analytics, and IoT. We provide clarity and direction amid the

often confusing array of approaches and vendor solutions. We provide our partners with a unique combination of

services and deep domain expertise to improve their product marketing, lead generation, and thought leadership

activity.

Red Hat is the world’s leading provider of enterprise open source software solutions, using a community-powered

approach to deliver reliable and high-performing Linux, hybrid cloud, container, eventing, and Kubernetes

technologies. Red Hat helps customers develop cloud-native applications, integrate existing and new IT

applications, and automate and manage complex environments. A trusted adviser to the Fortune 500, Red Hat

provides award-winning support, training, and consulting services that bring the benefits of open innovation to

any industry. Red Hat is a connective hub in a global network of enterprises, partners, and communities, helping

organizations grow, transform, and prepare for the digital future.

Achieving EDA success with Red Hat OpenShift Streams for Apache Kafka
Red Hat OpenShift Streams for Apache Kafka is a fully hosted and managed Kafka service for stream-

based applications that reduces the operational cost and complexity of delivering real-time applications

across hybrid-cloud environments using an EDA approach.

Red Hat, which has been actively working to deploy and support Kafka in enterprise environments since

2018, has learned how best to take advantage of EDA technology in demanding applications. Red Hat

offers the expertise not just to configure and manage Kafka, but also how to optimize the entire EDA

solutions stack and management strategy. In OpenShift Streams, Red Hat offers an opinionated service

that makes it fast and easy to get started with Kafka-driven EDA.

To learn more about how OpenShift Streams helps businesses unify and streamline their environments

using EDA, … [insert CTA]

