Data Enrichment: A Trend That’s Only Going to Get Bigger
From logistics to fraud prevention and across industries, data enrichment is being used, providing new insights and streamlining processes.
From logistics to fraud prevention and across industries, data enrichment is being used, providing new insights and streamlining processes.
As organizations continue to add more data collection and analytics to their business, proper data management and governance is critical for future
Bogging down ML engineers with poor quality data that requires extensive manual processes impacts product quality and new feature speed to market.
Blockchain can help ensure the success of IoT and AI by ensuring the trustworthiness and accuracy of the data being used by systems.
Cloud service uses Hadoop and machine learning to find and fix issues in real time.
Corporate educator TDWI has published an eBook on five engineering requirements for machine learning
The MapR DataOps Governance Framework enables organizations to achieve a high level of data quality and integrity, and help meet mandated
Some 40 percent of business initiatives fail due to poor-quality data. Michael Ludwig, chief product architect for Blazent, makes the case for data validation.