SHARE
Facebook X Pinterest WhatsApp

Data Observability: A Modern Solution For High Data Volume

thumbnail
Data Observability: A Modern Solution For High Data Volume

Cloud Workload Security and Cloud Workload Protection Concept - CWS and CWP - The Practice of Protecting Workloads Run on Cloud Resources - 3D Illustration

With the increase in data collection over the past two years by organizations in all industries, data observability programs are more necessary than ever.

Written By
thumbnail
David Curry
David Curry
Oct 4, 2022

The pressure of modern data delivery to meet higher volumes, variety, and velocity of data has been turned up to 10 in the past two years, with the pandemic supercharging many industries data collection to better inform users and improve applications. Many organizations are attempting to collect more data with the same tools as previous generations, and are not taking advantage of new processes such as data observability. 

Without observability, an organization cannot be fully aware of broken pipelines, poor data quality, or cost-to-value. With it, organizations can study the health of enterprise data environments, apply machine learning to familiar methodologies for data quality, optimize data delivery across distributed architectures, and contribute to DataOps initiatives. 

Data observability is part of a larger landscape of observability. With data observability, there are two disciplines of focus: data quality and data pipeline. Data quality observes the accuracy, completeness, and consistency of data, while data pipeline looks at resource performance, availability, and cost. 

SEE ALSO: Making the Case for a Small Data Observability Strategy

There are three lifecycle stages for data observability. The first is validation and detection, in which the program detects patterns, anomalies, outliers, and other nodes of data. From there, the observability platform should make assessments and predictions, which can be in the form of measuring impact, correlating events, or isolating root causes. Once assessments have been made, the data can then be used to resolve issues or prevent future events from happening. “Your number one goal is to prevent issues affecting customers. That involves fast resolution and proactive identification,” said Kevin Petrie, VP of research at Eckerson Group at the CDO TechVent virtual event on Data Observability. 

Some of the key success factors are establishing a strategic plan at the start of the project, with a capable data leader who is able to build a cross-functioning team to build the data observability program. The team must identify key control points within the data pipeline that make the most sense to check quality and risk. This can reduce bottlenecks and other issues with data quality and data pipeline checks in the future.  

“There’s a lot of enthusiasm about tools, about the ways in which anomaly detection machine learning algorithms are helping to adapt to this new world where you have cloud-driven, digital transformation-driven environments which need a lot more to track,” said Petrie. “But, you also need people and process and that’s an overriding factor as a success factor in data observability.”

Culture also plays an important factor in the success of a data observability project. “If you have smart people and they know what they’re doing and understand the data, that is great, but they also need to be empowered to make those decisions and that’s where the culture question comes in,” said Laura Sebastian-Coleman, data quality director at Prudential Financial. “Organizations that want to make the most of their data and get value from it need to also trust their people and fund how that data will be improved. That’s why it’s important while adopting these tools that the organization has clear governance over how to use the findings and who will make decisions.”  

There are a lot of benefits of implementing a fully-functioning data observability program, including improved business agility, efficiency, and productivity, alongside reduced security risk and more data uptime. All factors which can lead to competitive edge, improved hiring, and increased revenue generation. 

thumbnail
David Curry

David is a technology writer with several years experience covering all aspects of IoT, from technology to networks to security.

Recommended for you...

Smart Talk Episode 5: Disaggregation of the Observability Stack
4 Things Every Business Must Know About The Application Generation
Gregg Ostrowski
Feb 22, 2024
Full-Stack Observability Improves Uptime, Lessens Outage Cost
David Curry
Oct 9, 2023
Report: Don’t Neglect Open Source Security

Featured Resources from Cloud Data Insights

Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
The Shared Responsibility Model and Its Impact on Your Security Posture
The Role of Data Governance in ERP Systems
Sandip Roy
Nov 28, 2025
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.