SHARE
Facebook X Pinterest WhatsApp

DeepMind’s OPRO Technique Enhances AI Math Skills with Human-Style Encouragement

thumbnail
DeepMind’s OPRO Technique Enhances AI Math Skills with Human-Style Encouragement

Learning Education Mathematics Calculation Teaching Concept

The approach has the potential to enhance problem-solving capabilities and produce more precise outcomes, making AI models more effective in various applications.

Nov 17, 2023

Researchers at Google DeepMind have developed an innovative approach to enhance the mathematical abilities of AI language models like ChatGPT. This technique, called Optimization by PROmpting (OPRO), harnesses the power of other AI models to improve the effectiveness of written instructions provided to AI models, leading to significant improvements in their math skills. OPRO sidesteps the limitations of traditional math-based optimization methods by using natural language instructions to guide large language models (LLMs) in solving problems.

Leveraging natural language for optimization

In the traditional realm of machine learning, algorithms like derivative-based optimizers guide AI models to improve their performance by finding the best solution. These algorithms rely on mathematical definitions and the slope of a performance curve to make adjustments. OPRO, on the other hand, uses “meta-prompts” expressed in everyday human language to set the stage for optimization. Instead of mathematical definitions, OPRO describes the optimization problem in natural language and instructs LLMs to generate new solutions iteratively based on the problem description and past answers.

See also: How to Attract LLM Developers Amidst the AI Boom

Advertisement

Human-like encouragement boosts accuracy

One of the most intriguing aspects of the DeepMind study is the impact of specific phrases on AI model output. Phrases like “Let’s think step by step” significantly improved the accuracy of AI models when solving math problems. In this latest study, DeepMind researchers discovered that the phrase “Take a deep breath and work on this problem step by step” was the most effective prompt when used with Google’s PaLM 2 language model, achieving an 80.2 percent accuracy score in tests against a dataset of grade-school math word problems.

This approach may seem peculiar because AI models don’t reason like humans but rely on vast datasets of language phrases for problem-solving. Phrases like “let’s take a deep breath” or “think step by step” likely tap into patterns of reasoning or problem-solving examples in the data. OPRO’s advantage lies in its ability to sift through numerous possible prompts to identify the most effective one for a specific problem. This ability could enable AI to produce more accurate and useful results in the future.

OPRO represents a promising breakthrough in improving AI math skills by infusing human-style encouragement into AI language models. This innovative approach has the potential to enhance problem-solving capabilities and produce more precise outcomes, making AI models more effective in various applications.

thumbnail
Elizabeth Wallace

Elizabeth Wallace is a Nashville-based freelance writer with a soft spot for data science and AI and a background in linguistics. She spent 13 years teaching language in higher ed and now helps startups and other organizations explain - clearly - what it is they do.

Recommended for you...

How is AI Really Being Used?
Beyond Hallucinations: 7 Steps to Getting Accurate, Consistent, and Relevant Responses from AI
Leveraging AI and GenAI for Data-Driven Turnaround Planning
Improving Public Services with an AI Assist

Featured Resources from Cloud Data Insights

The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
The Shared Responsibility Model and Its Impact on Your Security Posture
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.