SHARE
Facebook X Pinterest WhatsApp

Machine Learning Model Predicts Therapy Effectiveness

thumbnail
Machine Learning Model Predicts Therapy Effectiveness

The new machine learning model could reduce the time to treatment by quickly identifying which patients are most likely to respond to ICB instead of the current trial and error method.

Aug 12, 2021

Researchers at Eindhoven University of Technology are turning to machine learning to better predict whether a particular immunotherapy will help cancer patients. The model in the latest paper shows promise and even outperforms traditional clinical approaches so far.

Leveraging immunotherapy in the cancer fight

Tumor cells hide from the body’s natural defenses, making cancer notoriously difficult to target and treat. Tumor cells block the body’s natural immune response but immunotherapy can wake it back up again for some patients. The problem is discovering early on which patients are most likely to respond.

One such therapy, immune checkpoint blockers (ICB), tells immune cells to ignore any shutdown orders issued by cancer cells trying to hide. Although it’s a revolutionary discovery, only about a third of cancer patients respond to the treatment.

The new machine learning model could reduce the time to treatment by quickly identifying which patients are most likely to respond to ICB instead of the current trial and error method. This model can also help ensure patients who will likely not respond receive timely treatments instead. The model may also uncover exactly why those other two-thirds of patients don’t respond.

See also: AI Could Unlock a New Era of Clinical Trial

Advertisement

How the machine learning model works

Machine learning explores biomarkers of tumors from patient samples. It explores how these markers communicate with other cells causing either a response to ICB or rejecting it. From there, the machine is able to learn from patient samples to identify which future patients carry the same biomarkers that indicate ICB success.

Using machine learning isn’t a new method, but researchers added a small trick to unravel a persistent data access issue. Although RNA-sequencing datasets are widely available, those specific to the cancer response are limited. Researchers used several substitute immune responses. Together, they could indicate a positive ICB response.

When tested against current biomarker detection, the model performed better. It could also be useful for identifying which markers are most important in garnering the desired immune response. It’s another step in delivering personalized medicine in partnership with doctors and healthcare professionals.

thumbnail
Elizabeth Wallace

Elizabeth Wallace is a Nashville-based freelance writer with a soft spot for data science and AI and a background in linguistics. She spent 13 years teaching language in higher ed and now helps startups and other organizations explain - clearly - what it is they do.

Recommended for you...

Top 5 Smart Manufacturing Articles of 2025
Building Resilient and Sustainable Industries With AI, IoT, Software-Defined Systems, and Digital Twins
Peter Weckesser
Nov 26, 2025
Adaptive Edge Intelligence: Real-Time Insights Where Data Is Born
Skype May Be Gone, but P2P Is Here To Stay

Featured Resources from Cloud Data Insights

The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
The Shared Responsibility Model and Its Impact on Your Security Posture
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.