SHARE
Facebook X Pinterest WhatsApp

Researchers Improve Robot Gesture Recognition With Computer Vision

thumbnail
Researchers Improve Robot Gesture Recognition With Computer Vision

The high accuracy is due to the fact that the visual and somatosensory information can interact and complement each other at an early stage before carrying out complex interpretation.

Written By
thumbnail
David Curry
David Curry
Aug 27, 2020

Researchers from Nanyang Technological University have developed an artificial intelligence system able to recognize gestures more accurately, through the use of wearable strain sensors.

The strain sensor far exceeds previous wearable devices, such as fitness wristwatches or gloves, by being much thinner and flexible. NTU scientists are able to receive data on skin senses and vision, which they then input into a neural network for processing.

SEE ALSO: Researchers Augment Robotic Prosthetics With AI and Computer Vision

“Our data fusion architecture has its own unique bioinspired features which include a man-made system resembling the somatosensory-visual fusion hierarchy in the brain. We believe such features make our architecture unique to existing approaches,” said NTU professor Chen Xiaodong.

“Compared to rigid wearable sensors, our innovation uses stretchable strain sensors that comfortably attaches onto the human skin. This allows for high-quality signal acquisition, which is vital to high-precision recognition tasks.”

Amazon and Tesla both suffered from setbacks in deploying robots to perform human tasks. In Tesla’s case, it found that robots were unable to find the right screw in a box and struggled to lift certain objects.

With better computer vision and precision, those issues may be fixable.

NTU’s AI system was highly accurate even in poor conditions, achieving a 96.7 percent recognition accuracy rating in the dark. The team intends to build a VR and AR system using the AI, which will be used as a show-piece for prospective clients.

“The secret behind the high accuracy in our architecture lies in the fact that the visual and somatosensory information can interact and complement each other at an early stage before carrying out complex interpretation. As a result, the system can rationally collect coherent information with less redundant data and less perceptual ambiguity, resulting in better accuracy,” said Dr. Wang Ming of NTU.

thumbnail
David Curry

David is a technology writer with several years experience covering all aspects of IoT, from technology to networks to security.

Recommended for you...

Real-time Analytics News for the Week Ending January 10
Model-as-a-Service Part 1: The Basics
If 2025 was the Year of AI Agents, 2026 will be the Year of Multi-agent Systems
AI Agents Need Keys to Your Kingdom

Featured Resources from Cloud Data Insights

The Manual Migration Trap: Why 70% of Data Warehouse Modernization Projects Exceed Budget or Fail
The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.