SHARE
Facebook X Pinterest WhatsApp

Edge Computing Evolves: AI/ML Becomes More Common

thumbnail
Edge Computing Evolves: AI/ML Becomes More Common

Brain with printed circuit board (PCB) design and businessman representing artificial intelligence (AI), data mining, machine and deep learning and another modern computer technologies concepts.

Edge computing changes are enabling decision-making where data is generated, and are powering applications that are reliable, private, and faster than ever.

Mar 5, 2021

Edge computing still isn’t the go-to framework for processing data, but more companies are making the shift. After a decade of centralizing cloud processing, more organizations will look to edge computing to reduce latency and scale processing. Here are some factors influencing this shift.

Before neural networks changed how we process big data, cloud computing sped up processing by bypassing on-premises solutions. Businesses sent data to the cloud for processing and received insights back with barely perceptible latency.

See also: Edge Computing Enhances In-Store Retail

Now, with more IoT devices, more data, and more systems, latency is perceptible. Artificial intelligence and machine learning allow companies to run their algorithms much closer to the device.

Edge computing helps balance two major needs:

  • Data appetite: Our data production is incomprehensibly big. Companies have to move this data in real-time to produce competitive insight, creating enormous bandwidth needs, storage needs, and heavy computing costs, solved by centralized cloud computing.
  • Privacy: This data movement to a centralized cloud creates privacy issues for sensitive data. Companies previously solved this by adopting a safer but significantly slower, on-premises processing.

AI/ML-optimized solutions allow companies to move processing more efficiently to the edge. They help protect sensitive information but avoid high computing costs by leaving that processing distributed at the edge. McKinsey predicts that AI will generate an extra $13 trillion of economic activity by 2030, and some of this will be in edge computing.

Advertisement
Download Infographic Now: AI in Five Steps

Containerized applications are more common

Containers are standardized, standalone software solutions designed to work independently. It includes everything you need to process a certain task or task series. Because they isolate software from the larger environment, you can export this process to other locations without risking corruption or misalignment.

Edge containers provide:

  • Low latency: Instead of far-off cloud processing, edge containers remain close to the user.
  • Scalability: Edge containers are deployed in parallel to points of presence (PoPs), so organizations can send them to many points at once. Processing grows as companies expand, and companies can meet demand where they are.
  • Lower bandwidth: Data-hungry applications cost companies a lot of money because traffic to a centralized server is high. Edge containers break up this traffic and provide pre-processing to reduce the load.
  • Maturity: Containers are tested and deployed as all-in-one solutions. There’s no need for retraining, and developers don’t worry about misalignment due to the processing location conditions.

See Also: Center for Edge Computing and 5G

Lean edge computing solutions

TensorFlow Lite and TinyML are just the beginning. They provide deep learning frameworks — traditionally deployed on processor-heavy applications — for on-device inference. They’re extremely low power and build sensor analysis into even the most extreme edge applications.

The key takeaway is flexibility. Companies can deploy low bandwidth, low latency solutions that previously required computationally intense (and expensive) commitments. Edge computing is becoming more common because it offers organizations more choices about how, where, and when to deploy. The introduction of new tools like edge containers and TensorFlow Lite offer deep learning capability without the weight.

Edge computing is now possible in so many use cases we previously never dreamed of. And thanks to decision-making close to the device, these applications are reliable, private, and faster than ever.

thumbnail
Elizabeth Wallace

Elizabeth Wallace is a Nashville-based freelance writer with a soft spot for data science and AI and a background in linguistics. She spent 13 years teaching language in higher ed and now helps startups and other organizations explain - clearly - what it is they do.

Recommended for you...

AI Agents Need Keys to Your Kingdom
The Rise of Autonomous BI: How AI Agents Are Transforming Data Discovery and Analysis
Why the Next Evolution in the C-Suite Is a Chief Data, Analytics, and AI Officer
Digital Twins in 2026: From Digital Replicas to Intelligent, AI-Driven Systems

Featured Resources from Cloud Data Insights

The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
The Shared Responsibility Model and Its Impact on Your Security Posture
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.