SHARE
Facebook X Pinterest WhatsApp

Combating AI Bias Requires Diverse Hiring

thumbnail
Combating AI Bias Requires Diverse Hiring

The word BIAS printed on clothespin clipped cards in front of defocused glowing lights.

Math and numbers can’t naturally overcome an implicit bias without some active involvement by those who can see the blind spots.

Nov 16, 2020

Despite the general opinion that artificial intelligence (AI) runs on numbers and is inherently unbiased, AI has displayed very biased behavior in the past few years. A landmark government study showed that facial recognition has a tough time with non-white faces. Amazon’s new recruiting engine didn’t like women. In many of these cases, the problem was blind spots in the data.

No one purposefully trains AI to discriminate, but our implicit bias often creates patterns that we don’t notice, and machines definitely do. In Amazon’s case, the data was gathered from ten years of resume combing in a field that men already dominated. In facial recognition software, the data simply had more white faces.

See also: Approaching AI and Ethics with Eyes Wide Open

Diversity closes blind spots in AI

Technology is a highly homogeneous field. This leaves gaps in thinking and data digestion that can lead to high profile discrimination cases found in AI lately. Math and numbers can’t naturally overcome an implicit bias without some active involvement by those who can see the blind spots.

So, what do companies and research institutions do? Hiring itself is fraught with bias already, continuing to favor candidates from the white male category. With the addition of AI-driven resume screening, these numbers could become more entrenched.

Advertisement

New hiring practices could prioritize diversity

Luckily, many companies have opted for a different approach. Using project-based hiring instead of pure resume screening, companies can discern skills-based benchmarks and find candidates outside the traditional hire.

These assessments have candidates answering business questions and tackling business problems in a real-world setting, either through take-home assessments or during the interview itself. This bypasses the resume screening and gets to the subtle nuances required to work in the tech field.

They’re also paying attention to how candidates ask questions and communicate results, two soft skills not visible on a traditional resume. The results could tip the scales towards the diversity the tech field needs to develop truly objective AI.

Companies that don’t adapt to less discriminatory hiring practices may continue to experience embarrassing, high-profile AI missteps while the companies that do may go on to better, more responsible development.

thumbnail
Elizabeth Wallace

Elizabeth Wallace is a Nashville-based freelance writer with a soft spot for data science and AI and a background in linguistics. She spent 13 years teaching language in higher ed and now helps startups and other organizations explain - clearly - what it is they do.

Recommended for you...

Model-as-a-Service Part 1: The Basics
If 2025 was the Year of AI Agents, 2026 will be the Year of Multi-agent Systems
The Rise of Autonomous BI: How AI Agents Are Transforming Data Discovery and Analysis
Smart Governance in the Age of Self-Service BI: Striking the Right Balance

Featured Resources from Cloud Data Insights

The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
The Shared Responsibility Model and Its Impact on Your Security Posture
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.