SHARE
Facebook X Pinterest WhatsApp

Data Scientists vs. Data Engineers and Data Analysts

thumbnail
Data Scientists vs. Data Engineers and Data Analysts

Data engineers, data analysts, and data scientists are all valuable additions to businesses of all size and scope. But they each have a different job to do.

Written By
thumbnail
Kat Campise
Kat Campise
May 24, 2017

Data scientists, data engineers, and data analysts all have one prominent task in common: They apply analysis to data. Granted, there are additional overlapping components to each job description, and the data scientist is the new kid on the block.

Given the overlap between the jobs, small- and medium-sized businesses who are wondering whether they need a data scientist tend to think data scientists will help design their database infrastructure and manage the data influx. Or they believe that the glitzy new analytics dashboard they just incorporated is their data scientist (or data analyst for that matter).

This doesn’t mean that a data scientist doesn’t have the skill to help you decide which data warehouse construct fits your business goals and objectives. And data scientists do analyze data with some of the same tools as a data analyst. However, expected “work products” are different and largely depend on prediction and inference using machine learning and statistical tools.

Machine learning and statistics aren’t precisely the same – the main difference is the intention of the results. We’ll come back to that shortly.

Data engineers

Data engineers are your architects of data. Need a functional database that accurately collects and stores structured, semi structured, and unstructured data? As the business grows, they will use various tools to help scale the infrastructure. More data equals more stress on your current system. A data engineer is your architecture super-hero who deploys data management and data warehouse tools such as Hadoop, Redshift, Google BigQuery, SQL, Java, and so forth.

Advertisement

Data analysts

Data analysts have been around for decades – and arguably longer than that. They gather data and run varying degrees of descriptive statistical calculations on a specific dataset they’ve pulled (with the help of the data engineer). Then, data analysts report the results. Given they often work with Excel, SAS, SPSS, IBM Watson or some other analytical software, they don’t need to know the intricate math underlying the quantitative analysis. It helps if they do, but their primary role is translating those numbers into “what does this mean in non-mathematical language?”

Data scientists

Data scientists are expected to go deeper. They pull a specific – often huge — dataset to answer a particular question, and test the data using machine learning and statistical algorithms. Certainly, some enterprises will require that we know SQL (or some version thereof) to cultivate the data from the database. And they also use Excel, SAS, SPSS, and IBM Watson to get an overview of the data. 

Data scientists are also expected to perform some form of extract, load and transformation (or extract, transform, and load if we need to clean the data first). Part programmer and part statistician, a basic data science toolset is comprised of R, Python, C++, and Matlab (though a company can require additional languages based on their internal infrastructure). Learn more: Enterprise scale analytics with R — white paper

Data scientists create or tool machine learning algorithms to help scale predictions. (See: How to apply machine learning to event processing). But, they also use complex statistical modeling to determine if the answer to their initial question has robust inference – meaning it’s generalizable – to the population in our data set. Prediction and inference aren’t exactly the same thing and one of the traits of an expert data scientist is both knowing and developing tools that demonstrate their knowledge of this discernment.

Data engineers, data analysts, and data scientists are valuable additions to businesses of all size and scope. Hopefully, there is now more clarity as to how each provides a unique contribution to the world of data.

Advertisement

Previous: What does a data scientist do?

Next: Why the future of data science is data psychology

thumbnail
Kat Campise

Kat Campise is a journalist and data scientist. She has a Ph.D in educational psychology from the University of Nevada-Las Vegas.

Recommended for you...

The Rise of Autonomous BI: How AI Agents Are Transforming Data Discovery and Analysis
Beyond Procurement: Optimizing Productivity, Consumer Experience with a Holistic Tech Management Strategy
Rishi Kohli
Jan 3, 2026
Smart Governance in the Age of Self-Service BI: Striking the Right Balance
Why the Next Evolution in the C-Suite Is a Chief Data, Analytics, and AI Officer

Featured Resources from Cloud Data Insights

The Difficult Reality of Implementing Zero Trust Networking
Misbah Rehman
Jan 6, 2026
Cloud Evolution 2026: Strategic Imperatives for Chief Data Officers
Why Network Services Need Automation
The Shared Responsibility Model and Its Impact on Your Security Posture
RT Insights Logo

Analysis and market insights on real-time analytics including Big Data, the IoT, and cognitive computing. Business use cases and technologies are discussed.

Property of TechnologyAdvice. © 2026 TechnologyAdvice. All Rights Reserved

Advertiser Disclosure: Some of the products that appear on this site are from companies from which TechnologyAdvice receives compensation. This compensation may impact how and where products appear on this site including, for example, the order in which they appear. TechnologyAdvice does not include all companies or all types of products available in the marketplace.